The Metric Histogram: A New and Efficient Approach for Content-based Image Retrieval
نویسندگان
چکیده
This paper presents the metric histogram, a new and efficient technique to capture the brightness feature of images, allowing faster retrieval of images based on their content. Histograms provide a fast way to chop down large subsets of images, but are difficult to be indexed in existing data access methods. The proposed metric histograms reduce the dimensionality of the feature vectors leading to faster and more flexible indexing and retrieval processes. A new metric distance function DM( ) to measure the dissimilarity between images through their metric histograms is also presented. This paper shows the improvements obtained using the metric histograms over the traditional ones, through experiments for answering similarity queries over two databases containing respectively 500 and 4,247 magnetic resonance medical images. The experiments performed showed that metric histograms are more than 10 times faster than the traditional approach of using histograms and keep the same recovering capacity.
منابع مشابه
Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval
Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...
متن کاملReview of ranked-based and unranked-based metrics for determining the effectiveness of search engines
Purpose: Traditionally, there have many metrics for evaluating the search engine, nevertheless various researchers’ proposed new metrics in recent years. Aware of this new metrics is essential to conduct research on evaluation of the search engine field. So, the purpose of this study was to provide an analysis of important and new metrics for evaluating the search engines. Methodology: This is ...
متن کامل